

KS3 Science Curriculum Overview

This is a suggested breakdown of the topics required for key stage three science, taught over three years.

	Year 7	Year 8	Year 9
Biology Topics	Cells and Organisation	Health and the Human Body	Inheritance and Evolution
	Reproduction	Photosynthesis and Respiration	Ecosystems and Interdependence
Chemistry Topics	States of Matter and Separating Mixtures	Chemical Reactions	Acids and Alkalis
	Atoms and the Periodic Table	Earth and Atmosphere	Materials and Recycling
Physics Topics	Energy Changes and Transfers	Electricity and Magnetism	Motion and Pressure
	Forces	Space	Waves

Working Scientifically

These skills should be embedded throughout the programme of study across all three disciplines.

Scientific Attitudes Experimental Skills and Investiga	Analysis and Evaluation Measurement
--	-------------------------------------

National Curriculum Links

Year 7 Biology

Cells and Organisation

Pupils should be taught about:

- cells as the fundamental unit of living organisms, including how to observe, interpret and record cell structure using a light microscope
- the functions of the cell wall, cell membrane, cytoplasm, nucleus, vacuole, mitochondria and chloroplasts
- the similarities and differences between plant and animal cells
- the role of diffusion in the movement of materials in and between cells
- the structural adaptations of some unicellular organisms
- the hierarchical organisation of multicellular organisms: from cells to tissues to organs to systems to organisms
- the structure and functions of the human skeleton, to include support, protection, movement and making blood cells
- biomechanics the interaction between skeleton and muscles, including the measurement of force exerted by different muscles
- the function of muscles and examples of antagonistic muscles

Reproduction

- reproduction in humans (as an example of a mammal), including the structure and function
 of the male and female reproductive systems, menstrual cycle (without details of hormones),
 gametes, fertilisation, gestation and birth, to include the effect of maternal lifestyle on the
 foetus through the placenta
- reproduction in plants, including flower structure, wind and insect pollination, fertilisation, seed and fruit formation and dispersal, including quantitative investigation of some dispersal mechanisms

Year 7 Chemistry

States of Matter and Separating Mixtures

Pupils should be taught about:

- the properties of the different states of matter (solid, liquid and gas) in terms of the particle model, including gas pressure
- similarities and differences, including density differences, between solids, liquids and gases
- changes of state in terms of the particle model
- conservation of material and of mass, and reversibility, in melting, freezing, evaporation, sublimation, condensation, dissolving
- the differences in arrangements, in motion and in closeness of particles explaining changes of state, shape and density, the anomaly of ice-water transition
- atoms and molecules as particles
- changes with temperature in motion and spacing of particles
- · internal energy stored in materials
- · energy changes on changes of state
- the concept of a pure substance
- the identification of pure substances
- · Brownian motion in gases
- diffusion in terms of the particle model
- diffusion in liquids and gases driven by differences in concentration
- · mixtures, including dissolving
- simple techniques for separating mixtures: filtration, evaporation, distillation and chromatography

Atoms and the Periodic Table

- a simple (Dalton) atomic model
- differences between atoms, elements and compounds
- · chemical symbols and formulae for elements and compounds
- the varying physical and chemical properties of different elements
- the principles underpinning the Mendeleev Periodic Table
- the Periodic Table: periods and groups; metals and non-metals
- how patterns in reactions can be predicted with reference to the Periodic Table
- the properties of metals and non-metals
- the chemical properties of metal and non-metal oxides with respect to acidity

Year 7 Physics

Energy Changes and Transfers

Pupils should be taught about:

- energy as a quantity that can be quantified and calculated; the total energy has the same value before and after a change
- comparing the starting with the final conditions of a system and describing increases and decreases in the amounts of energy associated with movements, temperatures, changes in positions in a field, in elastic distortions and in chemical compositions
- · work done and energy changes on deformation
- using physical processes and mechanisms, rather than energy, to explain the intermediate steps that bring about such changes
- simple machines give bigger force but at the expense of smaller movement (and vice versa): product of force and displacement unchanged
- heating and thermal equilibrium: temperature difference between two objects leading to energy transfer from the hotter to the cooler one, through contact (conduction) or radiation; such transfers tending to reduce the temperature difference: use of insulators
- other processes that involve energy transfer: changing motion, dropping an object, completing an electrical circuit, stretching a spring, metabolism of food, burning fuels
- comparing energy values of different foods (from labels) (kl)
- comparing power ratings of appliances in watts (W, kW)
- comparing amounts of energy transferred (J, kJ, kW hour)
- domestic fuel bills, fuel use and costs
- fuels and energy resources

Forces

- forces as pushes or pulls, arising from the interaction between two objects
- using force arrows in diagrams, adding forces in one dimension, balanced and unbalanced forces
- forces: associated with deforming objects; stretching and squashing springs; with rubbing and friction between surfaces, with pushing things out of the way; resistance to motion of air and water
- forces measured in newtons, measurements of stretch or compression as force is changed force-extension linear relation; Hooke's Law as a special case
- non-contact forces: gravity forces acting at a distance on Earth and in space, forces between magnets and forces due to static electricity
- opposing forces and equilibrium: weight held by stretched spring or supported on a compressed surface

Year 8 Biology

Health and the Human Body

Pupils should be taught about:

- the structure and functions of the gas exchange system in humans, including adaptations to function
- the mechanism of breathing to move air in and out of the lungs, using a pressure model to explain the movement of gases, including simple measurements of lung volume
- the impact of exercise, asthma and smoking on the human gas exchange system
- content of a healthy human diet: carbohydrates, lipids (fats and oils), proteins, vitamins, minerals, dietary fibre and water, and why each is needed
- · calculations of energy requirements in a healthy daily diet
- the consequences of imbalances in the diet, including obesity, starvation and deficiency diseases
- the tissues and organs of the human digestive system, including adaptations to function and how the digestive system digests food (enzymes simply as biological catalysts)
- the importance of bacteria in the human digestive system
- the effects of recreational drugs (including substance misuse) on behaviour, health and life processes

Photosynthesis and Respiration

- the role of leaf stomata in gas exchange in plants
- plants making carbohydrates in their leaves by photosynthesis and gaining mineral nutrients and water from the soil via their roots
- the reactants in, and products of, photosynthesis, and a word summary for photosynthesis
- the dependence of almost all life on Earth on the ability of photosynthetic organisms, such as plants and algae, to use sunlight in photosynthesis to build organic molecules that are an essential energy store and to maintain levels of oxygen and carbon dioxide in the atmosphere
- the adaptations of leaves for photosynthesis
- aerobic and anaerobic respiration in living organisms, including the breakdown of organic molecules to enable all the other chemical processes necessary for life
- · a word summary for aerobic respiration
- the process of anaerobic respiration in humans and micro-organisms, including fermentation, and a word summary for anaerobic respiration
- the differences between aerobic and anaerobic respiration in terms of the reactants, the products formed and the implications for the organism

Year 8 Chemistry

Chemical Reactions

Pupils should be taught about:

- the difference between chemical and physical changes
- conservation of mass in changes of state and chemical reactions
- chemical reactions as the rearrangement of atoms
- representing chemical reactions using formulae and using equations
- · combustion, thermal decomposition, oxidation and displacement reactions

Earth and Atmosphere

- the composition of the Earth
- the structure of the Earth
- the rock cycle and the formation of igneous, sedimentary and metamorphic rocks
- the carbon cycle
- the composition of the atmosphere
- the production of carbon dioxide by human activity and the impact on climate

Year 8 Physics

Electricity and Magnetism

Pupils should be taught about:

- electric current, measured in amperes, in circuits, series and parallel circuits, currents add where branches meet and current as flow of charge
- potential difference, measured in volts, battery and bulb ratings; resistance, measured in ohms, as the ratio of potential difference to current
- differences in resistance between conducting and insulating components (quantitative)
- separation of positive or negative charges when objects are rubbed together: transfer of electrons, forces between charged objects
- the idea of electric field, forces acting across the space between objects not in contact
- magnetic poles, attraction and repulsion
- magnetic fields by plotting with compass, representation by field lines
- Earth's magnetism, compass and navigation
- the magnetic effect of a current, electromagnets, D.C. motors (principles only)

Space

- gravity force, weight = mass x gravitational field strength (g), on Earth g = 10N/kg, different on other planets and stars; gravity forces between Earth and Moon, and between Earth and Sun (qualitative only)
- our Sun as a star, other stars in our galaxy, other galaxies
- the seasons and the Earth's tilt, day length at different times of year, in different hemispheres
- the light year as a unit of astronomical distance

Year 9 Biology

Inheritance and Evolution

Pupils should be taught about:

- heredity as the process by which genetic information is transmitted from one generation to the next
- a simple model of chromosomes, genes and DNA in heredity, including the part played by Watson, Crick, Wilkins and Franklin in the development of the DNA model
- differences between species
- the variation between individuals within a species being continuous or discontinuous, to include measurement and graphical representation of variation
- the variation between species and between individuals of the same species means some organisms compete more successfully, which can drive natural selection
- changes in the environment may leave individuals within a species, and some entire species, less well adapted to compete successfully and reproduce, which in turn may lead to extinction

Ecosystems and Interdependence

- the interdependence of organisms in an ecosystem, including food webs and insect pollinated crops
- the importance of plant reproduction through insect pollination in human food security
- how organisms affect, and are affected by, their environment, including the accumulation of toxic materials
- the importance of maintaining biodiversity and the use of gene banks to preserve hereditary material

Year 9 Chemistry

Acids and Alkalis

Pupils should be taught about:

- defining acids and alkalis in terms of neutralisation reactions
- the pH scale for measuring acidity/alkalinity; and indicators
- reactions of acids with metals to produce a salt plus hydrogen
- · reactions of acids with alkalis to produce a salt plus water
- exothermic and endothermic chemical reactions (qualitative)
- · what catalysts do

Materials and Recycling

- Earth as a source of limited resources and the efficacy of recycling
- the order of metals and carbon in the reactivity series
- the use of carbon in obtaining metals from metal oxides
- properties of ceramics, polymers and composites (qualitative)

Year 9 Physics

Motion and Pressure

Pupils should be taught about:

- speed and the quantitative relationship between average speed, distance and time (speed = distance ÷ time)
- the representation of a journey on a distance-time graph
- relative motion: trains and cars passing one another
- forces being needed to cause objects to stop or start moving, or to change their speed or direction of motion (qualitative only)
- change depending on direction of force and its size
- forces being needed to cause objects to stop or start moving, or to change their speed or direction of motion (qualitative only)
- change depending on direction of force and its size
- atmospheric pressure, decreases with increase of height as weight of air above decreases with height
- · pressure in liquids, increasing with depth; upthrust effects, floating and sinking
- pressure measured by ratio of force over area acting normal to any surface
- moment as the turning effect of a force

Waves

- waves on water as undulations which travel through water with transverse motion; these waves can be reflected, and add or cancel – superposition
- frequencies of sound waves, measured in hertz (Hz);
 echoes, reflection and absorption of sound
- sound needs a medium to travel, the speed of sound in air, in water, in solids
- sound produced by vibrations of objects, in loud speakers, detected by their effects on microphone diaphragm and the ear drum; sound waves are longitudinal
- · auditory range of humans and animals
- pressure waves transferring energy; use for cleaning and physiotherapy by ultra-sound; waves transferring information for conversion to electrical signals by microphone
- the similarities and differences between light waves and waves in matter
- light waves travelling through a vacuum; speed of light
- the transmission of light through materials: absorption, diffuse scattering and specular reflection at a surface
- use of ray model to explain imaging in mirrors, the pinhole camera, the refraction of light and action of convex lens in focusing (qualitative); the human eye
- light transferring energy from source to absorber leading to chemical and electrical effects; photo-sensitive material in the retina and in cameras
- colours and the different frequencies of light, white light and prisms (qualitative only); differential colour effects in absorption and diffuse reflection

Working Scientifically

Scientific Attitudes

Pupils should be taught to:

- pay attention to objectivity and concern for accuracy, precision, repeatability and reproducibility
- understand that scientific methods and theories develop as earlier explanations are modified to take account of new evidence and ideas, together with the importance of publishing results and peer review
- evaluate risks

Experimental Skills and Investigations

Pupils should be taught to:

- ask questions and develop a line of enquiry based on observations of the real world, alongside prior knowledge and experience
- make predictions using scientific knowledge and understanding
- select, plan and carry out the most appropriate types of scientific enquiries to test predictions, including identifying independent, dependent and control variables, where appropriate
- use appropriate techniques, apparatus, and materials during fieldwork and laboratory work, paying attention to health and safety
- make and record observations and measurements using a range of methods for different investigations; and evaluate the reliability of methods and suggest possible improvements
- apply sampling techniques

Analysis and Evaluation

Pupils should be taught to:

- apply mathematical concepts and calculate results
- present observations and data using appropriate methods, including tables and graphs
- interpret observations and data, including identifying patterns and using observations, measurements and data to draw conclusions
- present reasoned explanations, including explaining data in relation to predictions and hypotheses
- evaluate data, showing awareness of potential sources of random and systematic error
- identify further questions arising from their results

Measurement

- understand and use SI units and IUPAC (International Union of Pure and Applied Chemistry)
 chemical nomenclature
- use and derive simple equations and carry out appropriate calculations
- undertake basic data analysis including simple statistical techniques